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The distribution function for fermions has been derived from collision theory by using the detailed balance 
hypothesis. Its form 

f ( ~ )  = {exp[P(e - p)]  + 1 - 2/nZ}-' 

goes to the correct boson (n = 1) and fermion (n  = m) limits. Further the equations for the density matrix 
have been derived from the Hamiltonian. The zero order approximation gives a distribution having the 
same form as that derived by the detailed balance arguments. 

KEY WORDS: Detailed balance, momentum distribution. 

1 BACKGROUND 

Particles with fractional statistics, termed anyons by Wilczek', are of considerable 
current interest in connection with (a) the fractional quantum Hall effect, (b) the phase 
diagram of two-dimensional Wigner crystals in strong magnetic fields' and (c) high 
temperature superconductivity3. 

Though treatment of thermodynamics of an anyon gas have been given4s5, we are 
not aware of a calculation of the statistical distribution function fie) for states of 
energy E of such a gas. The purpose of this paper is two-fold: (a) To derivefle) using the 
detailed balance hypothesis (Section 2) and; (b) To derive the thermodynamic 
two-particle density matrix equation for grand canonical ensembles and use ap- 
proximate solutions to  compare the resultingfle) with that of Section 2. 
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2 COLLISION THEORY 

Let us start out from the treatment of collisions in a gas of Fermions following for 
example, Ma.6 Suppose we have the collision 1 + 2 * 3 + 4, i.e. the states 1,2 interact 
to change to states 3,4. We note that collisions are necessary to allow thermodynamic 
equilibrium to be attained, even in an ideal gas. Then following Ma, this reaction 
has the rate 

where 1 -fj and 1 -f4 are the probabilities that there are no particles in the states 
3 and 4. These factors must be present for Fermions because if the states 3,4 are 
occupied then the reaction cannot occur. Now one invokes the fact that this rate 
must equal that in the reverse direction, i.e. 

f lf2( 1 - f3)( 1 - f4)R = f3f4( 1 - fl)(l - f2)R’ (1) 

Ma next uses time reversal symmetry of quantum mechanics to show that R = R’ 
and the resulting equation leads to a solution of the form 

where p must be determined by the normalization condition for the particle number 
N .  

We next note that for Bosons the - signs in the factors (1  -13) and (1  -f4) in 
Eq. (1) mdst be replaced by the + signs in order to get the correct distribution: it 
is as though if states 3 and 4 are occupied, other states would be more inclined to 
go to them. 

Turning to fractional statistics, one finds that “interchange” of two particles 
introduces a phase factor to the wave function of the form exp(+in/n) the sign 
depending on the path followed in transforming the position variables. Thus assuming 
that detailed balance holds for anyons one has to modify the factor which takes into 
account the occupancy of the final states 3 and 4. Thus the factor (1 -fl for fermions 
must become (1 - u(n)f) where the factor a(n) will be taken to have the property, 

a(m) = 1, a(1) = -1 (3) 

- 1 t a(n) c: 1 (4) 

Obviously the “boundary conditions” specified in Eq. (3) for n = 00 and 1 ensure 
the correct Fermi-Dirac and Bose-Einstein limits. 

Then, whereas Ma rewrites Eq. ( 2 )  for Bosons and Fermions as 
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one now has for anyons 

Eq. (7) represents the present proposal for the shape of the statistical distribution 
function for anyons. 

The argument of this section does not contain within itself a procedure for 
determining the anyon shape factor. We can determine however the form of a(n) by 
imposing that AE) should result in the correct virial coefficient B as calculated by 
Arovas et al.,' assuming a proper choice of energy levels E and density of states. 

Taking E = k2/2, a calculation of the virial coefficient in the limit of large T (j + 0) 
results in 

B = L$a(n)/4, 

where AT is the thermal wavelength 1; = 2nh2/MkT. Introducing the form of 
the virial coefficient, 

B = -L$/4 + (1 + l/n)Rf - (1 + l/n)21$/2, 

we conclude that 

Finally by combining Eqs. (7) and (8) one has the result 

f ( ~ )  = l/[exp(B(E - p }  + 1 - (9) 

One notes immediately that with the special form (9) arising from the shape of 
f ( ~ )  in Eq. (7), the particular case n = 2lI2 leads precisely to Boltzmann statistics. 
Figure 1 shows the distribution for n-' = 1, 0.75, 0.5, 0.25 and 0. In each case the 
value of p was chosen by normalizing the distribution to unity and p = 5. 

3 DERIVATION OF THE DENSITY MATRIX FROM THE FREE ANYON 
HAMILTONIAN 

We next proceed to the derivation of the density matrix by using the Hamiltonian 
of the anyon gas and transformations similar to those used by Mori:' 

H = [1/2rn] d2rlC/+(r)[p - A(r)121C/(r) s 
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f 

0.0 0.5 1 .o 1.5 
E 

Figure 1 
(b), 0.5 (c), 0.25 (d) and 0 (e) for j = 5. 

The distribution functionflz) given by Eq. (9) for the following values of l/n = 1 (line a), 0.75 

$(r), $ ‘(r) are the fermion field operators, A(r) is the vector potential: 

A(r) = d2r’K(r - r’)p(r’) s 
where 

and e(r) is t..e azimuthal angle of the two-dimensions. vector r when r > a and 
0 otherwise. After integration the limit of a is taken to zero. 

We use the operator 

U(r) = exp [ i / n ]  d2r‘8(r - r’)p(r’) i s  
Note that if LJ(r’) is obtained from U(r) after rotation by 2n about the z axis then 
8(r’) = 8(r) + 2n and U(r’) = exp{i2nN/n}U(r) ,  where N = 5 @r$+(r)+(r). 

Following Mori,8 we define the anyon field operators 

& + (r) = + + ( r ) ~ ,  &W = u + (r)ll/(r) (13) 
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DISTRIBUTION FUNCTION OF ANYONS 139 

Then, by using standard methods of quantum mechanics the following equalities 
can be derived, 

u+(r’)++(r)V(r’) = exp([-i/n]O(r’ - r)}++(r) ( 144 

U+(r’)+(r)U(r’) = exp{(i/n)O(r’ - r)}+(r) ( 14b) 

and by explicit calculation the relations concerning the interchange of the field 
operators follow: 

$+(r)$+(r’) = -exp{iAO(r - r’)/n>$+(f)$+(r) 

$(r)$(r‘) = -exp{ iAO(r - r’)/n}$(r’)$(r) 

$(r)$ ‘(r‘) = 6(r - r’) - exp{ [ - iAO(r - r‘)/n>$ +(r’)$(r) 

(154 

(15b) 

( 1 5 4  

where 

AO(r - r’) = O(r - r’) - e(r‘ - r) (164 

and therefore 

AO(x, y) = - 7c sgn(y) (1  7b) 

The above relations coincide with those of Mori when the relative position r - r’ 
corresponds to z - z’ in the upper half of the complex plane, whereas the opposite 
phase factor appears for z - z’ in the lower half plane. 

The Hamiltonian expressed in terms of these operators is reduced to a free anyon 
Hamiltonian : 

For calculating the thermal average of the one particle density matrix, p(r, r’), 

we prove first that it is a function only of the relative coordinates. This is a 
consequence of fact that the Hamiltonian in its initial as well as its transformed form 
is invariant under translations and 

Tr[exp(-P(H - pN))p(r  + a , r  + a‘)] = Tr[exp(-P(H - piV))Tap(r ,r’)T;’]  (18b) 

By transferring the operator pi ’  on the left of the Trace argument, the operator 
action is shifted to the Hamiltonian which is invariant under translations. Hence our 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1
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statement that the density matrix depends only on the relative coordinate is proved. 
We next take the thermal average of both sides of (15c) and transfer all creation 
operators to the left by using the invariance of the trace under cyclic permutations. 
We get 

exp[iAO(r - rt)/n]($+(r)$(r’))r + ($+(r; &J(r’))r = 6(r - r’) 

where 

4 +(r; 8) = ~XP(P(H - PW$ + (r) exp( - P(H - p~ 

By using standard methods of quantum mechanics we find 

$+(r ;  P )  = ~ x P ( B ( - v ~ / ~ M  - p ) ) + + ~  

and therefore 

(4 +(r;  B)$(r’)>r = e x p ( p ( - v 2 / 2 ~  - ~))(++(r)+(r’))T 

Then after introducing this expression in (19) we find, 

{exp(/3( -V2/2M - p)) + exp(in- ‘AO(r - r’))}(p(r, r’)), = 6(r - r‘) 

Further simplification is obtained by introducing the center of mass R and relative 
position s = r - r’ variables. Using the translation invariance of < p )  we obtain the 
equation for the free anyon single particle density, 

where 
A = exp(/?( -V2/2M - p))  + cos(n/n) 

and 

B = - isgn(y)sin(n/n). 

Thus both operators are invariant under translations in the x direction while A is 
also invariant in the y direction. At first glance it seems strange that the x and y 
directions are not equivalent. This is not surprising for equations where magnetic 
interactions are present. A classical example is the choice of the Landau gauge for 
A in dealing with the electron in a homogenous magnetic field. 

In the following we shall proceed to the derivation of approximate results. By 
considering B as the perturbation term, the solution of (24) is of the form 
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DISTRIBUTION FUNCTION OF ANYONS 141 

with 

po(r)  = [cos(x/n + exp(p(k2/2M - p))] - ' exp(ikr)/(h1/2) (25b) 

where L is the maximum possible distance between two anyons. Thus in terms of 
formal occupation numbers q k  we have 

In this approximation, the occupation numbers have the same form as the ones 
obtained by using detailed balance considerations. However the virial coefficient 
calculated by using the zero order approximation po is 12, cos (n/n)/4,  i.e. it differs 
from that derived by Arovas et al.' This is due to the fact that in our zero order 
approximation the nonequivalence of the x and y directions is absent. Hence it is a 
limited approximation. It is also to be reminded that our thermodynamic quantities 
refer to a grand canonical ensemble, whereas Arovas et al. refer to the case of a 
canonical ensemble of two particles. 

Finally we conclude that higher order approximations to Eq. (24) are needed, where 
the asymmetry between the x and y axis will manifest its implications. 
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